Preface

Our Unique Planet is an upper-intermediate reading comprehension book focusing on key areas of science and technology. The book’s 22 units cover a wide variety of contemporary topics, which today’s college and university students will find both familiar and interesting.

The topics include space exploration, research into health and diseases, new technology, tsunamis and volcanoes. The book also presents and explains some of the basic concepts of science such as the nature of the particles that make up matter, the origin of life on Earth and human evolution. Students using the book will develop their reading skills and gain exposure to scientific texts. They will also expand their science vocabulary, and develop skills in interpreting visuals such as diagrams and graphs.

While presenting challenging and relevant subject matter, Our Unique Planet is also written in language that is clear and “reader-friendly.” This highly accessible style makes the book useful not only for science students, but also for students of English generally.
How to use this book

Background information and essential words and phrases
This introductory vocabulary activity is designed to prepare students for the main reading passage. Key vocabulary and concepts are introduced in contexts that refresh and consolidate students’ existing knowledge of the topic.

Reading passage
After completing the introductory vocabulary activity, students read the main passage. Ten words or phrases have been selected in each passage for study in the following vocabulary exercise. Where appropriate, the passages make reference to the accompanying diagrams. Each reading passage is also accompanied by a glossary, which gives Japanese translations of selected words and phrases.

Vocabulary study
In this activity, students match ten key words or phrases from the reading passage to their correct meanings. Students are encouraged to deduce the meanings from the context, rather than using a dictionary.

Comprehension questions
These multiple-choice questions test that important ideas and details from the passage have been understood. Three types of question are presented throughout the book: gap-fill style, in which students choose the correct word or phrase to fill a gap in a sentence, sentence-completion style, in which students choose the correct ending for a sentence, and question-and-answer style, in which students choose the correct answer to a question. Some of the comprehension questions relate directly to the accompanying diagram, giving students valuable practice in interpreting information in visual form or in a graph.

Summary and listening practice
This activity presents a one-paragraph summary of the reading passage with several words missing. First, students draw on their comprehension of the passage to write as many words as they can. Then they listen to a recording of the summary on the accompanying CD to complete the task. As well as giving a useful example of how a summary should be written, this activity also gives students the opportunity to hear the key language of the unit in spoken form.

Structure and written expression
This activity is based on TOEIC® Test exercises. Students choose the correct words or phrases to complete sentences relating to the passage. This activity focuses on both the meaning of words and correct grammatical forms.
Contents

PART 1 LIFE ON EARTH
Unit 1 The Origin of Life on Earth From Single Cells We Came 8
Unit 2 Fossils Old Bones, Precious and Rare 13
Unit 3 The Diversity of Life Earth’s Billions of Inhabitants 18
Unit 4 Endangered and Extinct Species Going, Going, Gone 23
Unit 5 Ancient DNA The History Detective 28
Unit 6 Little People The Hobbits of Flores 33

PART 2 RESEARCH AND TECHNOLOGY
Unit 7 Waste Disposal Remove, Reduce, Recycle 38
Unit 8 The Biggest Challenge An Explanation of Everything 43
Unit 9 Stem Cells The Great Medical Hope 48
Unit 10 Malaria The Poor People’s Disease 53
Unit 11 Superconductivity The Ever-Flowing River 58
Unit 12 Cell Phones Keeping Us All Connected 63

PART 3 OUR HOME
Unit 13 The Formation of the Solar System The Nebular Theory 68
Unit 14 Volcanoes Eruptions and Explosions 73
Unit 15 Tsunamis The Mighty Wave 78
Unit 16 The Atmosphere Layer of Life 83

PART 4 EXPLORATION
Unit 17 Undersea Mining Riches on the Ocean Floor 88
Unit 18 Space Probes Information Gatherers 93
Unit 19 Lunar Laboratory The New Antarctica? 98
Unit 20 Detecting Planets Observing the Light 103
Unit 21 Little Particles How Small Can You Go? 108
Unit 22 Big Science Too Much for One Nation 113
The Origin of Life on Earth

UNIT 1

BACKGROUND INFORMATION AND ESSENTIAL WORDS AND PHRASES

Complete the sentences using words or phrases from the box below. You may change the form of the words or phrases.

ancestor
cancer
ehypothesis
organic
bacteria
oxygen-dependent

1. A(n) ____________ is an idea that scientists develop to explain the occurrence of an event or set of facts.
2. ____________ are the smallest and simplest living things.
3. All living things are made of ____________ compounds, which are based on carbon.
4. If plants did not give off oxygen as a waste product, ____________ animals could not exist.
5. Proteins, which contain many ____________, form a major part of all living things.
6. The earliest ____________ of modern plants appeared in the oceans.
From Single Cells We Came

We know about the major steps in the evolution of life on Earth thanks to scientific evidence provided by fossils, including those of very simple, early forms of life. However, the question of how life began remains a matter for hypothesis. There are three main hypotheses to explain the origin of life on Earth. One is that life was created by a Supreme Being or spiritual force. Most cultures have their own beliefs or religions to explain a creator. However, since these beliefs cannot be proven or disproven, they are outside the boundaries of science and won’t be discussed here. Another hypothesis is that life began in another part of the universe and arrived on Earth on something like a meteor or comet. But the hypothesis that most scientists believe is that life began on Earth as a result of chemical reactions.

In 1953, Stanley Miller and Harold Urey at the University of Chicago demonstrated that some organic compounds could be created by simulating the conditions of early Earth. In an experiment, they sent electric currents through a mix of gases over a pool of water. The electric currents simulated lightning; the gases were the same as those found in the Earth’s early atmosphere; the pool simulated the early oceans. After a week, Miller and Urey found several amino acids in the pool. Amino acids combine to form proteins, and are therefore essential to the formation of living cells. Miller and Urey’s experiment, while not actually producing a living organism, gave support to the hypothesis that life began on Earth as a result of chemical reactions.

By 3.5 billion years ago, the first living things, single-celled bacteria, had appeared in the sea. These first bacteria obtained their energy from amino acids and produced methane and carbon dioxide as waste. Fossils of these bacteria have been found in rocks 3.5 billion years old. The bacteria became attached to floating sand grains that built up over long periods and hardened into structures of rock, known as stromatolites. Some of these structures are still found today in remote parts of Australia.

Gradual changes over more than one billion years gave rise to a new type of cell which, unlike bacteria, had a nucleus. These cells got their energy from a different source—the sun—in a process called photosynthesis. This produces oxygen as a waste product. Because these cells could feed themselves using the sun’s energy, their food was less limited than the bacteria’s food, and they flourished. Over many millions of years of evolution, these cells eventually gave rise to plants. If it weren’t for the development of these organisms using photosynthesis, the Earth’s atmosphere would contain no oxygen, and oxygen-dependent animals such as humans would never have appeared.
About one billion years ago, when life still existed only in the oceans, organisms made up of many cells started to appear and increase in size. The ancestors of modern plants appeared in the oceans nearly 700 million years ago, and around 440 million years ago, the first land plants appeared. These early land plants differed from the plants we are familiar with today. Many of them lacked true roots, stems and leaves. Animal life, too, developed first in the ocean and then moved onto land. About 560 million years ago, the first animals appeared in the oceans, and about 460 million years ago, tiny mites and spider-like creatures left the water to explore the land.

There are many gaps in our understanding of how life began and developed on Earth. We will probably never know the full story.

GLOSSARY

VOCABULARY STUDY
Match each word or phrase with its definition. Try to guess the meaning from the context without using a dictionary.

1. disproven a. to show that something is true
2. demonstrate b. result in, or lead to
3. simulate c. to become hard
4. waste d. to grow well and in large numbers
5. harden e. a solid object built from smaller parts
6. structure f. to create conditions similar to something
7. give rise to g. knowing something well
8. flourish h. to be without something; to not have something
9. familiar with i. shown to be not true
10. lack j. material that a living thing does not need and gets rid of

10 Life on Earth
COMPREHENSION QUESTIONS

Circle the best answer, a, b, c or d, to each of these questions.

1. Most scientists believe that life on Earth began:
 a. on a meteor or comet.
 b. as a result of chemical reactions.
 c. in a pool of water.
 d. in another part of the universe.

 a. a living organism
 b. oceans
 c. amino acids
 d. single-celled bacteria

3. Roughly how long ago did the first living things appear on Earth?
 a. 3.5 billion years ago
 b. one billion years ago
 c. 700 million years ago
 d. 440 million years ago

4. Where did the first living things appear on Earth?
 a. In the sea
 b. In remote parts of Australia
 c. In rocks
 d. In mounds

5. Unlike the first bacteria, a cell that has a nucleus gets its energy from:
 a. oxygen.
 b. the sun.
 c. water.
 d. plants.

6. How were the first land plants different from modern plants?
 a. Early plants didn’t have true roots.
 b. Early plants didn’t have stems.
 c. Early plants didn’t have leaves.
 d. All of the above (a, b and c)
SUMMARY AND LISTENING PRACTICE

Read the paragraph and fill in as many blanks as you can. Then listen to the recording and fill in the rest of the blanks.

Most scientists believe that life on Earth began as a result of chemical ______________. In the 1950s, two scientists demonstrated that ______________ acids could be created by sending electric ______________ through a mix of gases over water. The first living things, which were single-celled ______________, appeared in the sea 3.5 billion years ago. Then a new type of cell appeared which took in energy from the sun in a process called ______________ and gave off oxygen as a ______________ product. Later, plants and animals developed in the sea and then moved onto ______________. There is still a lot that we do not know about how life began on Earth.

STRUCTURE AND WRITTEN EXPRESSION

Complete the sentences using the most appropriate words or phrases. You may refer to the main text to choose the best option.

1. Most scientists believe that life on Earth began ______________ chemical reactions.
 a. resulted b. as a result of c. resulting d. as a result

2. The gases in Miller and Urey's experiment were ______________ those in the Earth's early atmosphere.
 a. the same as b. same as c. same d. as same

3. The first living things obtained their energy ______________ amino acids.
 a. by b. of c. from d. at

4. The first living things ______________ carbon dioxide and methane as waste.
 a. produced b. obtained c. appeared d. found

5. Early land plants differed ______________ modern plants.
 a. from b. at c. to d. with

6. The plants we are familiar ______________ today have roots and leaves.
 a. from b. at c. to d. with

12 Life on Earth